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The GoalThe Goal

The goal is multiply object tracking by detection 
with application on pedestrians.
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ApproachApproach

Novel approach for multi-object tracking from 
monocular camera source, which considers 
object detection and space-time trajectory 
estimation as a coupled optimization problem.
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MotivationMotivation

� Improve robustness by coupling object detection 
and tracking
� Enhanced object model + feedback from  

trajectory estimation to detection
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trajectory estimation to detection

� Global optimization to resolve trajectory 
interactions
� Incorporate real-world physical constraints



Experimental ResultsExperimental Results
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TrackingTracking

� Trajectory initialization
� Background subtraction
� Detection
� Divine Intervention
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� Target following 
� Mean – Shift tracking
� Extended Kalman Filters
� Particle Filters



Common Challenges Common Challenges 

� View point variation

� Illumination
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� Scale

� Deformation

� Occlusion

Image adopted from Li Fei Fei



Intro of Detection into TrackingIntro of Detection into Tracking

A detector can be used for:
� To initialize targets or to re-initialize them in case of 

failure of tracking.
� The output of detector can be used directly as data 

source for tracking.
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source for tracking.
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Related worksRelated works

� K. Okuma, A. Taleghani, N. de Freitas, J. Little, and D. Lowe. 
A boosted particle filter:  Multi-target detection and tracking. In 
ECCV’04.

� Detection by Adaboost classifier.
� Multi-target tracking by 
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� Multi-target tracking by 
Mixture Particle Filters
(variation of particle filter).
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Previous WorksPrevious Works

� Pedestrian detection -
B. Leibe, E. Seemann, and B. Schiele. Pedestrian detection in crowded 
scenes. In CVPR’05, 2005.
B. Leibe, A. Leonardis, and B. Schiele. Robust Object Detection with 
Interleaved   Categorization and Segmentation. In IJVC’05, revised in 2007.
� B. Leibe and B. Schiele. Interleaved object categorization and 

seg-mentation. In BMVC’03 
� B. Leibe, A. Leonardis, B. Schiele, Combined Object Categorization and 
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� B. Leibe, A. Leonardis, B. Schiele, Combined Object Categorization and 
Segmentation with an Implicit Shape Model, ECCV’04 Workshop 

� Space-Time Trajectory Estimation –
B. Leibe, N. Cornelis, K. Cornelis, and L. Van Gool. Dynamic 3d scene 
analysis from a moving vehicle. In CVPR’07, 2007.
(CVPR'07 Best Paper Award)

� Optimization –
A. Leonardis, A. Gupta, and R. Bajcsy. Segmentation of range images as 
the search for geometric parametric models. IJCV, 14, 1995.
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Detection modelDetection model

Constellation Model: Parts and Structure
Bastian Leibe, Aleˇs Leonardis, and Bernt Schiele
Robust Object Detection with Interleaved Categorization 

and Segmentation, in IJCV 2005.
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Detection model Detection model -- TrainingTraining

Implicit Shape Model - ISM
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Pedestrian detection Pedestrian detection ––
Hypothesis’ Building ExampleHypothesis’ Building Example
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MDL Hypothesis selection MDL Hypothesis selection ––
in Generalin General

� Problem
We have an over-complete set of hypothetical models. 
Who is the best?

� Intuition
To prefer simple explanations to more complicated 
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To prefer simple explanations to more complicated 
ones. 

� Solution
Minimum Description Length (MDL) (Rissanen 1984):
the best encoding (model representation) is the one 
that minimizes the total description length for image, 
model, and error. 



MDL Hypothesis selection MDL Hypothesis selection --
SolutionSolution

� Sdata – number N of data points, which are explained by 
H .

� Smodel denotes the cost of coding the model itself.

1 mod 2~h data el errorS S k S k S− −
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� Serror describes the cost for the error committed by the 
representation.

� κ1, κ2 are constants to weight the different factors



MDL Hypothesis selectionMDL Hypothesis selection ––
Solution of Quadratic Boolean ProblemSolution of Quadratic Boolean Problem
� Optimal set of models :

� n = [n1, n2,..., nN] is a vector of indicator variables, such that ni = 
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� n = [n1, n2,..., nN] is a vector of indicator variables, such that ni = 
1 if hypothesis hi is accepted, and ni = 0 otherwise.

� S is an interaction matrix.
� diagonal elements sii are the merit terms, individual hypotheses.
� the off-diagonal elements (sij + sji) express the interaction costs 

between two hypotheses hi and hj. 



Implementation of MDL for Implementation of MDL for 
DetectionDetection
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Constraint: 

Each pixel may at most belong to a single detection.
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SpaceSpace--Time Trajectory EstimationTime Trajectory Estimation

t

� Trajectory growing
� Collect detections in event cone
� Evaluate under trajectory

Visual object recognition course Visual object recognition course 6777767777

x

t

z

itiH ,

Image adopted from B.Leibe



SpaceSpace--Time Trajectory EstimationTime Trajectory Estimation

t

� Trajectory growing
� Collect detections in event cone
� Evaluate under trajectory
� Adapt trajectory
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� Trajectory growing
� Collect detections in event cone
� Evaluate under trajectory
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� Trajectory growing
� Collect detections in event cone
� Evaluate under trajectory
� Adapt trajectory
� Iterate
� Setting set as hypothesis

SpaceSpace--Time Trajectory EstimationTime Trajectory Estimation

t
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� Setting set as hypothesis
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Implementation of MDL for Implementation of MDL for 
Trajectory EstimationTrajectory Estimation

� Trajectory selection
� Start search from each detection.
� Collect all resulting trajectories.
� Perform hypothesis selection by 
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solution of Quadratic 
Boolean Problem.
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Implementation of MDL for Implementation of MDL for 
Trajectory EstimationTrajectory Estimation
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Constraint:
� Each detection can at most belong to a single 

trajectory.
� No two trajectories may intersect at any point in time.
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Coupling between Detection and Coupling between Detection and 
Trajectory EstimationTrajectory Estimation

� Basic idea:
� Couple the two optimization problems into a single one.
� Move support for current detections into coupling terms.

� Coupling terms:
� Express support for certain trajectories from new detections.
� Express spatial prior for detection locations from trajectories.
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� Express spatial prior for detection locations from trajectories.
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Coupling between Detection and Coupling between Detection and 
Trajectory EstimationTrajectory Estimation

� The Problem: Asymmetric relationship

� Trajectories rely on continuing detections for support.
� But detections can exist without supporting 

trajectories (e.g. when a new object enters the 
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scene).



Coupling between Detection and Coupling between Detection and 
Trajectory EstimationTrajectory Estimation

� Solution: Inserting of virtual trajectories v with 
interaction matrix R.
� Enable detections to survive without contributing to an existing 

trajectory
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� W  - Interaction between detections and virtual trajectories
� V   - Interaction between detections and real trajectories
� U   - Mutual exclusion between the two groups

Image adopted from B.Leibe
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Results and DiscussionResults and Discussion

� Videos:

� Advantages
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� Limitations

� Conclusions
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